HEMILEIUS (ACARIDA: CRYPTOSTIGMATA: SCHELORIBATIDAE) FROM SOUTH AUSTRALIAN SOILS

Abstract

D. C. LEE

LEE, D, C, 1989 Fiemileius (Acarida: Cryptostigmata' Sehelontandae) from South Australian soils. Rec: S. Aust. Mus. 23(2): 97-111,

Hemileius Berlese, 1916 is redjagnosed and compared with other genera of ScheloribatidaeThree new species; $H_{1}(H)$. biclavalus. $H_{(}(H$.$) copecius and H_{1}$. (H.) rectus, are grouped in the nominate subgenus. Two new species, $H_{\text {, }}$ (T.) minimus (type species) and H. (T) paratenuis, are placed in a new subgenus, Tenuileius. These mites occurred mast commonly in the litler and soil at the semi-stro, mallee-broombush and mallee-heath sites, but also at three others of the nine florally diverse South Australian sites studied. This is the first record of Hemileius from Australia. A key is given to distinguish the species described.

D.C. Lee, South Australian Museum, North Tërrace, Adelaide, South Australia 5000. Manusctipt received \& August 1988.

This is a further part of an ongoing study of sarcoptiform mites in South Australian soils, sampled from nine florally diverse sites, and for which an introduction to the relevant work on the adyanced oribate mites (Planofissurae) has been published (Lee 1987). Hemileius is grouped here in the Scheloribatidae Grandjean, 1933, although it is the nominotype of Hemileiidae Balogh \& Balogh, 1984, a family without generally accepted validity and based on an arbitrary division in the character state series between the absence and presence of pteromorphs, which is also used in a questionable delineation of Hemilieus and Scheloribates (see under 'Remarks' on Hemileius). A new subgenus, Tenuileius, is established for species witt a hysteronotal shield that is strongly tapered anteriorly, leaving the anterior two setae (Z l and Z2) close to its lateral margin. The Scheloribatidae is considered further in a paper (Lee \& Pajak in press) on this family, which paricularly considers Scheloribates Berlese, 1908 and a new genus. The only other scheloribatid genus so far known from Australia is Setobates Balogh, 1962 (Lee \& Pajak 1988),

Whilst all legs (femur-tarsus) have been illustrated in parts of this study, for Hemileius it has been considered sufficient to illustrate only leg II, except for one species (H. rectus), Measurements are in micrometres ($\mu \mathrm{m}$). The mites examined were all collected by the author and are mainly deposited in the South Australian Museum (SAMA), but also in the Field Museum of Natural History. Chicago (FMNH) and the New Zealand Arthropod Collection, D.S.I.R., Auckland (NZAC).

Notation

The morphological notation is as that used for Scheloribatidae by Lee \& Pajak (in press), but the
following elaborations have been made to terms defining external somal ridges. A humeral tectum is distinguished from the larger pteromorph by its width being only subequal to or less than the diameter of the bothridium (base to seta $z 2$). This is an arbitrary division of a character expressed as a continuous series of states through from no recogmisable structure, an inconspicuous ridge, to a large wing-like flange or pteromorph. A ridge is considered partial if it extends only along part of the usual length covered. Ridges are linear if they form a narrow, superficial line; costate if they form a rit-like thickening; laminar if the thickening bears a Ilange. Ridge (or carina) $k f$ (see Grandjean 1953. Fig. 2A) is here termed the subtutorium, a linear or costate proteropleural tidge level with acelabutumf. The subtutorium is not homologous with the tutoriam since they can occur together as in Muliercula ngoyensis (Coelzer, 1968 Fig. 10), the qutorium running along part of a line between setae $j 1-z 2$. So far in this study no tutoria have been recognised.

Systematics

Genus Hemileius Berlese
Hemileius Berlese, 1916, p. 322. Type species (original designation): 'Protoribates (Scheloribates) initialis Berf.' Grandjean, 1953, D. 119. Coetzer, 1968, p. 23. C. Pérez-Iñigo, 1984, p. 170.

Diagnosis

Scheloribatidae. Hysteronotum with 10 pairs of medium Jength or short setae (ro microsetae). Pleromorph absent, humeral tectumi may be present. Proteronotal setae $j 2-j 2$ separated by gap $1.25 \times$ or less distance $j 2-z 1$. Dorsosejugal furrow
complete and curved forward between lamellac, not straight. Femurs I and LL with short stalk encompassed by collar and recess in caput so that pedestal and caput nearly abut. Tibiae without prosimoventral cuticular spurs. Tarsus I usually witf three $(a v 1, p+1, v 2)$ proximpventral setac, rarcly v2 absent Solenictia on tibiae 111 and IV taper distally (no microglobular tip). Pretarsus usually with three, rarely with two (central and anterior) claws, fateral ctaws without subterminal tooth and slimmer than cemiral claw, but ar least as stout as tarsal setae id at halfway atong their length.

General morphology of Australian species

General appearance butbiform or sutrectangular with sontal setae, except for proteronotal files j and z, fine and shore, and legs short and stout or of medium-girth. Anterior margin of hysteronotal shiedd not obscuring aperture ol bothridiurn to sela 22. Four pairs of normal (nol fissuriform) sacculate hysteronotal foramina and smooth (withour tubercles or Jongitudinal striac) istegument. Proteronotal sensory sefa (z2) capitate, lanceolate or fusiform, not setiform. Translameltar line (between $z \mathrm{I}-z \mathrm{I}$) abseni. Prelamella (between setas $\bar{j} 1-z 1$ or rostral margin-zil) costate or lincate, wher may be partial. Lansella and sublamella weakly laminar, bothridjum abuts onto lamella, Subtutorium straight or curved, Finear or costate. Somal chaetotaxy: $2 i, 2 z, 15,2 l, 6 Z, 25,3 l, 1 / l, 32 / l$ (rarely 2), $3 / 1 / ; 4.17 \mathrm{gg}, 15 \mathrm{Sg} ; 2 / 2 \mathrm{Za}, 3.5$ a; one lateral coxite seta (///3) may be microseta (H . copectus). note its absence on $\mathrm{H} .(T$,$) tenuls. Disciaitim$ rudimentary, either costate or flange height less than iwice widtls of setal base IF3. Circumpedal ridge exther absent or, if present, not reaching margin of opisthosternal shield. Mid-coxisternal groove present or abseal. Leg chaetotaxy usually 1 - Tr 1, Fe 5, Gie $2(1 \mathrm{so})$, Ti $4(2 \mathrm{so})$, Ta 18 or 19 (2 so); 11 - Ir 1 , Fe 5, Ge 2 (1 so), TiA (1 so), Ja 15 (2 so); IH - Tr 2, Fe 3, Ge 1 (1 so), Ti 3 (t so). Ta 15: JV - Te 1, Ee 2, Ge 2, Ti 3 (1 so), Ta 12 Variation on tarsus I becalse seta $1 / 2$ preseat or absent. Order of diministidge leg length - I, IV, 11. III; of diminishing maximum libial height], EI, IV, III (or III = IV). Flanges on femurs (even femur 11) small or absent. Porose areas either present or absent on femurs and trochanters J11 and 1V, but absent on tibiae and tarsi. Trochanter IV with caput length subequal to its height, curved dorsal surface so that subglobular in profile, crown formis a distoveniral crescenl-shaped Mange sometimes weakky tilobed,

Remarks

Hemillews is very similar to Seheloribates, as suggented by Grandjean (1953), the major recognised difference being the presence or absence
of a preromorph. Despite this, Balogh \& Balogh (1984) established the Hemileidac, delincating it from the Scheloribatidae on the basis of this character. But the recognition of a pteromorph is subjective (Norton \& Palacios-Vargas 1987), although arrifielally defined here isee under Notation'). The Herrileidae is therefore to be synonymised (Lee \& Pajak in press) with Scheloribatidae until a convincing detineating diagnosis is provided. It is also arguable that Hemileius should be regarded as a junior synonym of Scheloribates, because there is a strong similarity between Homileius recius sp, nov, and a small species of Scheloribates from the mallee-heath site (see Lee \& Pajak in press) and Hemileius initialis (type species) is similar to some larger Schelorihates species.

In relation to other members of the Scheloribatidae, Hemileius is also superficially very similar to other members of the Hemileinae Balogh \& Balogh, 1984, as well as live genera (Cryptozeres Hanmer, 1962; Dametorina Grandjean, 1951: Metaleius Travé, 1960. Puraleius Travé, 1960 and Siculobaia Grandjean, 1953) overlooked by Balogh \& Balogh (1984) in their review of the Oripodoidea (as 'Oribatuloidea'). Members of these five genera are adequately described, but their relationships are uncertain. Cryptozetes, Dometorina and Siculobala are primcipally epiphytic or saxicolous mites and their relationships are discussed by Norton \& Palacios-Vargas (1987) in terins of specialisations. often regressive synapomorphies, for being epiphytic and derived from character states of edaphic genera such as Hemileius. It should be noted that whilst pteromorphs, pleural recesses delineated by circumpedal ridges or processes, and angular leg segment shapes are derived in the Oripodoidea, the loss of bysteronotal setae by Hemileius suggesis that its lack of such character stares may represeni regressive synapomorphies, possibly for living in deeper soil layers, and sometimes it may also be savicolous or epiphytic. The five species described here illustrate the problems al defining scheloribalid genera and diagnosing a genus such as Hemileils. They are smaller than the established species and also difler in lacking porose areas on the ribiae and tarsi. The spectes most superticially similar to the type species, H. biclavuius, differs in baving only wo pretarsal claws and it also lacks a proximoventral seta on tarsus I as for Crypiozeles. Domelorina and Siculabata. Another species, H. rectus, shows similarities to Schelonbates; whilst H. copecrus is intermediate in form. Two species, H, mininus and H_{r} paratenuis, are similar to the previously established H. tenu/s. Aoki, 1982, may represcot a lineage sdapted for deeper son layers, and are referred to a new subgenus. Temuileius. If there is
more confidence in the similarity between its members not reflecting convergence, then it might be better regarded as a genus. The formal diagnosis of Hemileius used by Coetzer (1968), that implied by the couplets in the keys of Balogh \& Balogh (1984), as well as that provided here, may not indicate relationstrips.
To establish the number of known species in Hemileius is difficult. Initially the genus (as a subgerius of Oribainta) included eight species, of which one had a subspecies (as a variety), and for which the descriptions had limited value. Three of these species became the rypes of either Dometorina, Siculobata or Liebstadia, whilst the other four species have rarely been referred to since. Coctzer (1968) excluded four species from Hemileius, that had previously been in Liebstadia (mulfiporose rather that sacculate foramina) or Scheloribates (pteromorph present). Of the seven speccies newly combined wilf Hemileius by Coetzer (1968), C, Pêtet-lñigo (1984) exchuded one and suggested that the other six, as well as the four rarely referred to species grouped in Hemileius when it was established, should probably also be excluded. The 15 species grouped here in Hemileins are listed under the two subgenera.

> Key to Soumi Alstral. An Hemuetus Spectes (Aulis)

1 - Setal distance $52-210.8 \times$ or less distane 22-12. Hysteronotal humeral margin convex with lectum If pedoteoum 11 extends laterally turther than I, then humeral teetrom extends furither stifl,

Hemileius (Hemileius) Berlese, 2.

- Setal distance z2-71 subequal to distance $z_{2}-j 2$, Hysteronolal humeral margin concave, without humeral tectum. Pedotectum extends daterally furiher than 1.

$$
\text { Hemlems (Temuillius) subgen. nov, } 4 .
$$

2 - Interlamellar seta (i2) medium-length, able to reach zl. Setal distance $I \mathrm{l}-\mathrm{H}$ about 2 x distance $I n-I \pi$. Short midsternal apoudeme level with selae $I I I$ and $I I I$, …..... H. (Hemiteius) copectus sp. nov.

- interlamellar seta (j2) long. able fo reach j1. Setal distance $|1-\Gamma|$ subequal to distance 1/1- [11. No midsternal apodeme:.

3 - Pretarsi with two ctaws. Humeral lectum widdh about 0.3 . diameter of bothridium tbase to sera : 2). Hygerosoma bulbiform. Pedotectum 11 nut extended lateratly as tar as I.......
H. (Hemilē̃us) bichavalus sp. nov,

- Pretarsi with three claws. Humeral tectum width subequal to diameter of bothridium (base lo seta z2). Hysterosomtia parallel-sided.

Pedotectum 11 extends laterally further than I
.F. (Hemileius) rectus 5p, nov,
4 -Sensory sela $z 2$ caput subglobose. Subtutorium extends forward to near seta z. zi Hysteronotal shield very narrow, seta Z2 as elose to margin as diameter of its base. Gap between genital oxifice and amlerior sternal margin $1,5 \times$ or more distance between genital and anal orifice

> H. (Tenulemes) minimus sp nov.

- Sensory seta z2 caput fusiform, Subtutorium not extended forward to near sela z1, Hysteronotal shield tarrow, seta 72 more than 0.5 . is tength away from margin. Cap between genital orifice and anterior sternal margin less than $1.5 x$ distance between genital and anal orifice. (Tentileius) paratenuis sp. nov.
Subgenus Hemileius (Hemileias) Berlese

Diagnosis

Hemileius. Hysteronotal seta Z1 near to anterior margin ol hysteronotal shield (distance z2-Z1 $0,8 \times$ or less distance $z 2-j 2$). Hysteronotal shield widc with convex humeral tectum dorsally obscuring pleural striated cuticle and leaving seta Z2 more than its length away from margin. Pedotectum II usually not extending laterally further than 1 ; if it does, then humeral tectum extends farther still.

General morphology of Australian species

Colour sbiny brown or yellowish-brown, Smaller than established species (247-447 compared to 450-710), Legs short (mean femur-tarsus length: $36-40 \% / 2$ of somal length) and tibiae mechium-girth to stout (mean maximum beight: $38-49 \%$ of mean Jenght). Humeral tectum and limbus widths between $0.3 x$ and subequal to diameter of bothridium, but not correlated (e.g. H. bielavulus with inconspicuous humeral tectum and broad limbus), limbus encompassing entire hysteronotum behind humeral tectum. Sacculate foramina with slit-shaped or round pores.

Distribution

Although some species from the Southern Hemisphere have been grouped in Hemileius, previously established species currently in this genus all appear to be known only from the Northern Hemisphere. Records and species numbers are greatest from soultern parts of northern temperate regions, either around the Mediterrarean and Canary Islands (Pm) or in the United States of America (Nr, Na) and Hawaii (Ap). Records from further north (Pe, Nn) are limited to Hemilieus initialis in Europe and to H . quadriplis and an unidentified species in Carada (Marshall, Reeves \& Norton 1987).

The three new species of Hemileius (Hemileius) from South Australia appear to be the only Southern Hemisphere records. Two species occue in large enough numbers at relatively dry semi-anid, mallee-broombush and mallee-heath sites to support their ecological categotisation as Jremiedaphic or, in the case of the smaller species, as possibly being euedaphic. The other species, Hemileius copectus, is mainly found (32 adults) at the semi-arid site, but is also represented by a single specimen at both sclerophyll forest and pine foresi sites, suggesting that an edaphic species at a drier site may be saxicolous or epiphytic at the moister sites and so poorly represented in soil and litter samples.

Remarks

Hemifends (Fremileius), the nomunate subgenus, includes a fieterogeneous majority of species in the genus. It ranges in form from the type, which is somewhat like H, biclavulus and hak similarities to the epiphytic Dothetorina for example, to H. rectus with similarities to some Seheloribates.

The following 12 species are grouped in Hemileius (Hemiletus): H, iH. biclavalus sp. nov.: H. (H.) comatus Berlese, 1920; F. (H.) copectus sp. nov.; H. (H) elongatus E. Pérex-gressiti Balogh \& Balogh, 1983; H. (H.) haydeni (Higgins \& Woolley, 1975); H. (HV) hierrensis C, Pérez-lâiga, 1984; H. (H) initialis (Berlese, 1908), type species; H, (H.) nicki Denmark \& Woadring, 1965; H. (H.) quadripilis Fitch, 1856 (syn-pallida Ewing, 1909); H. (H.) rectus sp. nov; H. (H.) rolusius C. Pérez-Ifigo, 1969,
The generic placement of H, (H.) quadripilis is problematic (see Marshalt, Reeves \& Notton 1987), but its synonymy with H. (H) pallida Ewing, 1909 is accepted, although H. (H.) pollida Ewing: Hammer, 1952 from Carlada (Nn) may not be conspecific with it, having substantially shorler bysteronotal setae.

Hemileius (Hemileius) biclavulus sp. nov.

 Figs 1, 2 and 8Female
Dorsal profile usually bulbiform, sometimes more parallel-sided than illustrated (Fie. 1). [diosomal length, 404 ($25,380-447$). Leg lengthis (femur-tarsus for idiosomal leneth 41]): [- 198, 11-161, 111 - 136, 1Y-163. Tibial maximum heights (for 411): $1-23,11-38,15 T-15,15$ -15 .

Proteronotum with incomplete prelamella extending from seta $j l$ only hallway towards $z 1$. Lamella and sublamella costate, sublamella less robush, runs close to lamella along anterior half, bothridium (base z2) closer to lamella. Sobtutorium
linear and straight, with alveolate sculpturing posterior and ventral to it. Setae $j 1, / 2, z 1$ incoospicuously ciliate, interlamellar (/2) and lamellar (z1) setae long, $j 2$ reaching to level of $j 1$, and $z 1$ reaching heyond rostral apex. Sensory sela (z2) long, reaching $z 1$, exposed stalk shightly longer than caput (appears shorler in Fig. 1 because sloping dorsalwards); caput fusiform, three files of cilia, maximum of seven cilia in any file, parallelsided when viewed dorsally (Fig. 1), uniconver viewed laterally, Seta $s 2$ length about twice diameter of bothridial aperture.
Hysteronotal setae subequal in length, but $J 6,26$, $\$ 6$ slighily longer. Humeral tectum small but limbus substantial, width about $\times 0.3$ and subequal to diameter of bothridium respectively. Two paits of unnamed pores (usually anterior pair betweer seta Z2-foramen F3, posterior pair between sera S5-midline; rarely anterior pair between foramen F3-midline or third pair between Z4-midline). Stit. like pore hf3 short, approximately transverses h/A and hf5 paralled to lateral margith, visible ventrally (nol illustrated in Fig. 2, too near margin), h/6 oblique adaxdal end posterior, Sacculate formina wulh slit-shaped pores.

Pbodosternum with medium gap (about $0.66 \times$ setal distance $\pi-I n$) between apodemes 1. Adaxial end of apodeme 111 base latitudinally Jevel with genital seta.$/ Z 1$ and longitudinally level with coxite seta $/ 1 / 7$, Custodial ridge present. Discidium forms shallow flap (depth about twice diameter of setal base I/3). Circumpedal ridge reaching forward to merge with diseidial ridge and backward so that halt of its length lies posterior to aperture to acetabular cavity IV. Alveolate sculpturing along midcoxite region (Fig. 2, illustrated only on coxite IV). No midsternal apodeme. Lateral coxite setae longer than those around genital shield.

Opistbosternum with gemital setae less than half length of anal setae. Eggs subcylindtical, 189×85 (2 eggs, 47% of somal leugth 401), rugose exochorion: Number of eggs in female (number of remales) as follows: nome (12), one (3), two (12). three (9), four (4).

Legs short (mean femur-tarsus length: 40% of soma). Dorsal porose area on all lemurs and trochanters 1 II and IV. Rugae posteriorly on femurs $1 I I$ and IV. Shallow ventral flanges on keels of femurs II, III and IV. Solenidium sol on tarsus I subequal in diameter to base of seta $d 3$, and reaching setae $d 4$. Only five ventral setae on tarsus 1, proximoventral seta 12 absent, proximal three with 8 to 10 cilia (longest cillum longer than setal base diameter). Pretarsi with two claws (anterior slim and central stout claw).

Male

As female, except proteronotal setae in files j and

FIGURES 1 AND 2. Hemileins (Hemileius) biclavulus sp. nov., female soma. 1, notum; 2, idiosternum.
z. may be slightly longer. Sona smaller, idiosomal length 367 (mallee-heath, 25, 339-373) and 362 (mallee-broombush, 1).

Material examined

Holotype: $Q($ N198887), sand, litter, under banksia shrubs (Banksia ornata), Tamboore Homestead ($35^{\circ} 57^{\prime} \mathrm{S}, 140^{\circ} 29^{\prime} \mathrm{E}$), 4.viii. 1974.
 (N1988115-N1988186), same data as holotype;

Undesignated: 120 Q Q, $3090^{\circ} 0^{\circ}$, same data as holotype. Single o (N1988187), sand, litter, sparse moss, under ridge-fruited mallee (Eucalyptus incrassata) amongst broombush shrubs (Melaleuca uncinata), Ferries-McDonald Reserve (35 15^{\prime} S, $139^{\circ} 09^{\prime} \mathrm{E}$), 20.vi.1974.

Distribution

Australia (Aa). South Australia. Malleebroombush, open serubland (Ferries-McDonald Reserve), Murray-Darling basin, $10 / 1$ of $8 \times$ $25 \mathrm{~cm}^{2}$. Matlee-heath, tall open shrubland (Tamboore Homestead, near Mt Rescue Conservation Park), Murray-Darling basin, 148 O O , 381 on or $/ 8$ of $8 \times 25 \mathrm{~cm}^{2}$.

Remarks

H. biclavulus is the largest South Australian species of Hemileius with similar facies to the slightly bigger type species, H. initialis. On the other hand, H. biclawulus is unique in the subgenus in having only two pretarsal claws and five ventral setae on tarsus l (a reduced ventral setation on
tarsus I is also recorded for the epiphytic Cryptozetes, Dometorina and Siculobata). Although given a minor weighting here, these two charaeters have been used to diagnose oripodoid genera.

Henilcius (Hemileius) copectus sp. nov.

 Figs 3, 4 and 9
Female

Dorsal profile ovoid. Idiosomal length, 278 (semiarid shrubland, 10, 262-288) and 270 (sclerophyll forest, 1). Leg lengths (femur-tarsus for idiosomal length 276, semi-arid shrubland): I - 123, 1I - I08,

III - 95, IV - III. Tibial maximum heights (for 276): I - I5, Il - I3, III - 12, IV - I2.

Proteronotum with complete prelamella (seta $j 1-z 1$-rostral margin), costate near $j 1$, rest linear. Lamella laminar, sublamella costate, runs elose to lamella along anterior half (may appear more robust from some angles because more refractile), bothridium (base of seta $z 2$) closer to lamella. Subtutorium semicircular, linear. Setae $j 1, j 2, z, I$ inconspicuously ciliate, interlamellar ($j 2$) and lamellar ($z 1$) setae medium-length; $j 2$ reaching $z \mathrm{I}$, $z 1$ reaching $j 1$. Sensory seta ($z 2$) long, reaching z; ; exposed stalk slightly shorter than eaput (appears even shorter in Fig. 4 beeause sloping dorsalwards); caput fusiform, three files of eilia, anterior file on

FIGURES 3 AND 4. Hemileius (Hemileius) copectus sp. nov., female soma, 3, notum; 4, idiosternum.
straight margin with 14-16 cilia along caput and stalk, other files with 6-8 cilia confined to caput. Seta $s 2$ length subequal to diameter of bothridial aperture.

Hysteronotal setae subequal in length, but $J 6, Z 6$, S6 slightly larger. Humeral tectum and limbus small, width of both $\times 0.3$ diameter of bothridium. Unnamed pores not located. Slit-like pore hf3 oblique, adaxial end posterior, $h f 4$ and $h f 5$ parallel to lateral margin, visible ventrally (not illustrated in Fig. 4, too near margin), $h f 6$ oblique, adaxial end anterior Sacculate foramen F3 with round pore, whilst $F 4, F 5, F 6$ with slit-shaped pores.

Podosternum with wide gap (subequal to $I 1-I I 1$) between apodemes 1. Adaxial end of apodeme 111 base latitudinally level with coxite seta III1 and on longitudinal line closer to coxite seta IV2 than IV1. Midsternal apodeme between setal pairs $I I 1$ and IIII. No custodial ridge. Discidial ridge without discidium. No circumpedal ridge. Pcdotectum 11 short, not extending as far laterally as pedotectum 1. No midcoxite sculpturing or midsternal apodeme. Coxite setae all short, $I I$ and $I I I$ particularly short, seta III3 inconspicuous microseta.

Opisthosternum with genital setae more than half length of anal setac, but adanal setae $\mathrm{Sa2}, \mathrm{Sa3}$ longer. Eggs subcylindrical, $157 \times 82(1 \mathrm{egg}, 55 \%$ of somal length 285), granulate exochorion. Number of eggs in female (number of females) as follows: none (9), one (3).
Legs short (mean femur-tarsus length: 40% of soma). Indistinct porose area on femurs and trochanters 111 and IV. Indistinct rugae on femurs 111 and IV. No ventral flanges on keels (not discernible from lateral aspect) of femurs II, III, 1V. Solenidium sol on tarsus 1 subequal in diameter to base of setae $d 3$, and reaching setae $d 4$. Six ventral setae on tarsus 1 , proximoventral seta $\nu 2$ present, proximal four with three or four cilia (longest cilium longer than setal base diameter). Pretarsi with three claws (central stout claw, lateral slim claws).

Male

As female, except soma smaller, idiosomal length, 259 (semi-arid shrubland, 18, 252-271) and 262 (pinc forest, I).

Material examined

Holotype: ○ (N1988188); soil, litter, moss and other low growth plants under bladder saltbush (Atriplex vesicaria) amongst sparse false sandalwood (Myoporum platycarpum), Koonamore Vegetation Reserve ($32^{\circ} 07^{\prime} \mathrm{S}, 139^{\circ} 21^{\prime} \mathrm{E}$), 27.vi. 1974.

Paratypes: 9 ¢ \circ (N1988189-N1988197), 180 $0^{\circ} \sigma^{\circ}$ (N1988198-N1988215), same data as holotype.

Undesignated: 29% and $2 \sigma^{\circ} \sigma^{\circ}$ lost, same data as holotype. Single 9 (N1988216), soil, litter, sparse
moss, under sclerophyllous shrubs amongst messmate stringybark (Eucalyptus obliqua), nr summit of Mt Lofty, Cleland Conservation Park, $34^{\circ} 59^{\prime} \mathrm{S}, 138^{\circ} 45^{\prime} \mathrm{E}, 9 \mathrm{y} .1974$. Single $\sigma^{\circ}(\mathrm{N} 1988217)$, soil, litter, under Pinus pinea, Kuitpo Forest Reserve ($35^{\circ} 12^{\prime} \mathrm{S}, 138^{\circ} 41^{\prime} \mathrm{E}$), 22.v.l 1974.

Distribution

Australia (Aa), South Australia. Semi-arid low shrubland (Koonamore Vegetation Reserve), Lakc Eyre Basin, 12 甲 $\rho, 2000 / 6$ of $8 \times 25 \mathrm{~cm}^{2}$. Sclerophyll forest (Mt Lofty, Cleland Conservation Park), South gulfs, $8 / 1$ of $8 \times 25 \mathrm{~cm}^{2}$. Cultivated pine forest (Kuitpo Forest Reserve), South gulfs, $0 / 1$ of $8 \times 25 \mathrm{~cm}^{2}$.

Remarks

H. copectus is distinguishable from nonAustralian species in the nominate subgenus by its small size and only medium-size proteronotal setae $z 1$ and $j 2$. It is similarly distinguishable from H. biclavulus, whilst H. rectus, which is of a similar size, has long proteronotal setae and a more substantial humeral tectum. Ventrally, coxite seta III3 is reduced to a microseta, drawn slightly larger in illustration (Fig. 4) so that it is recognisable, and there is a short midventral apodeme anterior to the genital shield, both unique character states for the genus.

Hemileius (Hemileius) rectus sp. nov.
Figs 5-7

Female

Dorsal hysteronotal profile subrectangular, partly due to humeral tceta. 1diosomal length, 280 (25 , 260-300). Leg lengths (femur-tarsus for idiosomal Icngth 293): I -12 I, II $-105,11$ I -85 , IV 113. Tibial maximum heights (for 293): 1-18, I1 $-15,111-13,1 \mathrm{~V}-14$.

Proteronotum with complete prelamella (seta $j 1-z 1$), costate near $j 1$, rest linear. Lamella mainly laminar, costate near $z 2$. Sublamella costate, runs close to lamella along anterior half, bothridium (base seta $z 2$) closer to lamella. Setae $j 1, j 2, z 1$ inconspicuously ciliate, interlamellar (j2) and lamellar ($z 1$) setae long; $j 2$ reaching level of $j 1, z 1$ reaching beyond rostral apex. Sensory seta (z2) medium-length, reaching beyond $j 2$; exposed stalk shorter than caput; caput fusiform, three files of cilia, anterior file with 16-18 cilia along caput and stalk, medium file with 8-9 cilia and posterior file with 11-13 cilia confined to caput. Seta $s 2$ length about $1.5 \times$ diameter of bothridial aperture.

Hysteronotal setae subequal in length, but $J 6$ and Z6 slightly longer. Humeral tectum conspicuous, width about $0.25 \times$ distance $Z \mathrm{II}-Z 2$; limbus small,

FIGURES 5 AND 6. Hemileius (Hemileius) rectus sp. nov., female soma. 5, notum; 6, idiosternum.
width about $0.1 \times$ distance $Z 1-Z 2$. Unnamed circular pores present between and near setae $Z 2$ and S4, Slit-like pore hf3 oblique, with adaxial end anterior, sometimes transverse, rarely adaxial end posterior (one side only), hf4 and hf5 visible dorsally (Fig. 5), hf6 oblique with adaxial end anterior. Sacculate foramina with round pores.

Podosternum with medium gap (about two thirds I1-III) between apodemes 1. Adaxial end of apodeme III base latitudinally level with point anterior to genital shield and longitudinally level with point closer to coxite seta IV1 than IV2.

Custodial ridge present. Discidium forms a shallow flap (depth about twice diameter of setal base $I V / 3$). Short straight circumpedal ridge separate and well bchind other subpodal ridges. Weak alveolate sculpturing along mid-coxitc region (Fig. 6, illustrated only on coxite IV). No midsternal apodeme. Pedotectum II robust, long, extending further laterally than pedotectum 1. Lateral coxite setae longer than those around genital shield.

Opisthosternum with genital setae about twothirds length of anal setae. One female with $6 / Z g$ on one side (extra seta halfway between $J Z g 2-J Z g 3$).

FIGURE 7. Hemileius (Hemileius) rectus sp. nov,, posterior aspect to femur-pretarsus of right legs showing only one seta.

Eggs oval, $139 \times 80(1 \mathrm{egg}, 50 \%$ of somal length 278), granular exochorion. Number of eggs in female (number of females) as follows: none (30), one (36), two (5).

Legs short (mean fcmur-tarsus length: 36% of soma). Porose areas on femurs and troehanters III and IV. Indistinct or no rugae on femurs 1 and 11 , distinct rugae on femurs 111 and IV. Shallow ventral flanges on femurs 11, 111, 1V. Solenidium sol on tarsus I subequal in diameter to base of seta $d 3$ and reaching setae $d 4$. Ventral setae on tarsus 1 with six or seven cilia (longest cilium subequal in length to seta base diameter) along two thirds of length. Six ventral setae on tarsus I, proximoventral seta $v 2$ present, all of them with 8 or 10 cilia, longest subequal to setal base in diameter. Pretarsi with three claws (central stout claw, lateral slim claws).

Male

As female, except smaller soma, idiosonral length 247 (25, 226-265).

Material examined

Holotype: © (N1988218); soil, litter and sparse moss undcr ridge-fruited mallee (Eucalyptus incrassata) clumps amongst broombush shrubs (Melaleuca uncinata), Ferrics-McDonald Conservation Park ($35^{\circ} 15^{\prime}$ S, $139^{\circ} 09^{\prime}$ E), 20.vi. 1974.

Paratypes: 669 \& (N1988219-N1988277 and N1989148-N1989154), 40 ó Ó (N1988278-N1988311 and N1989155-N1989160), same data as holotype;

Distribution

Australia (Aa). South Australia. Mallee-
broombush, open scrubland (Ferries-McDonald Reserve), Murray-Darling basin, 71 甲 \%, $440 \circ \circ / 7$ of $8 \times 25 \mathrm{~cm}^{2}$.

Remarks

H. rectus is distinguishable from non-Australian species in the nominate subgenus by its smaller size. It has the largest humeral tectum lor the genus, which, with the parallel-sided hysteronotum and long interlamellar and lamellar setae, makes it appear similar to some small species of Scheloribates. But the humeral tectum in lateral view is substantially smaller than the pteromorphs of Scheloribates as is the ventral flange on femur II, although the similarities may reflect a close rclationship.

Subgenus Hemileius (Tenuileius) subgen. nov.
Type species: Hemileius (Tenuileius) minimus sp. nov.

Diagnosis

Hemileius. Hysteronotal seta $Z 1$ distant from antcrior margin of hysteronotal shield (distance $z 2-Z 1$ subequal to $z 2-j 2$). Hysteronotal shield narrow anteriorly with humcral margin strongly tapered, linear and without tectum, so that seta Z2 less than its length from margin. Striated cuticle that separates hystcronotum from ventral shields clearly visible from above, reaching as far forward as seta $z 2$. Pedotectum II extends laterally further than I.

FIGURES 8-11. Right legs II, posterior aspect to femur-pretarsus. 8, Hemileius (Hemleius) biclavulus sp. nov.; 9, Hemileius (Hemileius) copectus sp. nov.; 10, Hernileius (Tenuileius) minimus sp. nov.; 11, Hemileius (Tenuileius) paratenuis sp. nov.

General morphology of Australian species

Colour, shiny yellowish-brown. Smallest species in genus (175-298). Legs short (mean femur-tarsus length: $37-38 \%$ of somal length) and tibiae very stout (mean maximum height: $52-59 \%$ of mean length). Limbus restricted to margin of hysteronotal shield behind slit-like pore hf4, narrow, width about $0.3 \times$ diameter of bothridurn. Sacculate foramina with round pores.

Distribulion

Currently Temuileius appears to be confined to regions around the Pacific, species being recorded from Australia (Aa), Japan (Pc) and possibly Hawaif (Ap).

Remarks

Tenuileius includes two Australian species in which the hysteronotal shield is strongly tapered anteriorly, with no marginal thickening, and leaving the pleural striated cuticle, which extends unusually well forward, visible from above. Associated with this, seta ZI is transposed backwards from the anterior margin of the hysteronotal shield and sometimes towards the mid-line, The anterior narcowing of the hysteronotal shield may have been overlooked in the past since it lies above a region including the highly refractile structures around the sejugal division. Therefore, H. tenuis Aoki, 1982 is inctuded in the subgenus on the basis of other similarities to H. paratenuis. Also, it is noted that whilst H. gressitti Balogh \& Batogh, 1983 is left in the nominate subgenus, it should be regarded as a potential candidate for inclusion in Tenuileius that awaits further examination. As pointed out in the 'Remarks'on the genus, members of this subgenus may be adapted to live in the deeper soil layers. If the adaptations are apomorphic, Tenuileius might be better reranked to be a genus. The following three species are grouped in Hemileius (Temuileins): \boldsymbol{H}. (T.) minimus sp. nov., type-species; H. (T.) paratenuis sp, пov_; H. (I.) tenuis Aoki, 1982.

Hemileius (Tenuileins) minimus sp, nov.

Figs 10, 12 and 13

Female

Dorsal bysteronotal profile slim, oyal. Idiosomal length, 190 ($6,185-200$). Leg lengihs (femur-tarsus. for idiosamal length 187): 1-82, if - 67, IIL 59, 1V - 69. Tibial maximum heights (for I87): $1-\mathrm{IS}, \mathrm{If}-13,1 \mathrm{II}-12,1 \mathrm{~V}-12$.

Proteronorum with complete prelamella (sela $j 1$-rostral margin), costate near $j 1$, rest $\overline{\text { bear. }}$ Lamella mainly laminar, linear near $z 2$. Sublamella costate, runs close to tamella along anterior half, bothridium (base of seta z2) close to lamella.

Subtutorium present, costate, dorsally extending to near seta $z 1$, Setae $j 1, j 2, z 1$ inconspicuously ciliate, interlamellar (/2) and lamellar (z1) setae mediumlength, both only reaching level of $z 1$ and $j 1$ respectively. Sersory sela shotr, not reaching $j 2$: exposed stalk shorter than caput, caput subglobose (laterally compressed), two ranks of cilia in six or seven files. Seta $s 2$ length about 2% diameter of bothridial aperture,

Hysteronotal setae short (but nearly as long as $j 2$), subequal in length, peripheral ($J 6, Z 3,56, Z 6$) setae slightly longer. Slif-like pore h/3 nearly transverse, adaxial end anterior; $h f 4$ and hff near lateral margin, visible dorsally, hf6 partially visible dorsally.

Podosteruum with moderately wide gap (slightly less than $I(-J I 1$) between apodemes f . Genital sthield substantially closer to anal shield than antetion podosternal margin. Adaxial end of apodeme III base latitudinally level with coxite seta $/ \mathrm{I}$, and longitudinally level with coxite seta $/ / 2$. Custodial ridge present. Discidial ridge with inconspicuous discidium, No circumpedal ridge. Pedotectum 11 slim, but long, extending laterally beyond pedotectum 1. No midcoxite sculpturing, Lateral coxite setae longer than those around mid-line.

Opisthosternum with genital setae evenly spaced and less than half length of anal setae No eggs observed.

Legs short (mean femut-tarsus length: 37% of soma). Dorsal porose areas not evident on femurs and trachanters. Rugae posteriorly on femurs int and IV. No ventral keess or flanges on femurs. Solenidium sol on tarsus I fatter than seta d3, reaching pretarsal claws. Six ventral setae on tarsus I. proximoyentral seta 12 present, proximal four with 3 or 4 cilia (longest cihum longer than setal base diameter). Pretarsi with three claws (central stout claw, lateral slim claws).

Male

As fermale, except soma smaller, idiosomal length, 177 (2, 175-178).

Malerial examined

Holotype: if (N1988312): sand, litter, under banksia shrubs (Banksia arnata), Tamboore Homestead ($35^{\circ} 57^{\prime} \mathrm{S}, 140^{\circ} 29^{\prime} \mathrm{E}$), 4.vili. 1974.

Paratypes; 3 q. Q (N19883/3-N1988317), 2000 (N1988318, N1988319), same data as holotype.

Disiribution

Austrafia (Aa), South Australia Mallee-heath, tall open shrubland (Tamboore Homestead, near Mit Rescye Conservation Park), Murray-Darling basin, $698,200 \mathrm{co} / 1$ of $8 \times 25 \mathrm{~mm}^{2}$.
D. C. LEE

FIGURES 12 AND 13. Hemileius (Tenuileius) minimus sp. nov., female soma. 12, notum; 13, idiosternum,

Remarks

H. (Tenuileius) minimus is the smallest, slimmest species of Hemileius so far known. It has a relatively large podosternal region, the shortest legs recorded for Hemileius, with short, stout tarsi, and extensive pleural striated cuticle, suggesting adaptation for burrowing, probably in a euedaphic habitat.

Hemileius (Tenuileius) paratenuis sp. nov.
Figs 11, $14 \& 15$

Female

Dorsal hysteronotal profilc oval. 1diosomal length, 296 (3, 293-298). Leg lengths (femur-tarsus for idiosomal length 298): I -136 , II -108 , III

FIGURES 14 AND 15. Hemileius (Temuleius) paratenuis sp. nov., female soma. 14, notum; 15, idiosternum.
-90, IV - 113. Tibial maximum heights (for 298): $1-23,11-15,111-12,1 V-14$.

Proteronotum either without prelamella or it is incomplete and lineate (Fig. 14). Lamclla mainly laminar, linear near z2. Sublamella laminar, runs close to lamella along anterior half, bothridium (base of seta z2) close to lamella. Subtutorium present, costate, crescent-shaped. Setae $j 1, j 2, z 1$ inconspicuously ciliate, interlamellar (i2) and lamellar (z1) setae medium-length, $j 2$ reaching beyond level of $z 1$ and $z 1$ beyond level of $j 1$. Sensory seta ($z 2$) medium length, reaching beyond $j 2$; exposed stalk longer than caput; caput fusiform,
three files of cilia, median file with 7-8 cilia along caput and stalk, anterior and postcrior files with 5-7 cilia confined to caput. Seta $s 2$ length about $2.5 x$ diameter of bothridial aperture.

Hysteronotal setae, subequal in length but posterior rank ($J 6, Z 6, S 6$) longer, sometimes sinuous. Slit-like pore $h f 3$ oblique, abaxial end posterior; on right side of one female, longitudinal slit-like pore between setae $Z 2-Z 3$, presumed $h f 2$; $h f 4$ and $h f 5$ near lateral margin, visible laterally (not illustrated); only half of $h f 6$ visible dorsally (Fig. 14).

Podosternum with moderately wide gap (slightly
less than $I 1-I I I$) between apodernes 1. Genital shield closer to anal shield than anterior podosternal margin, Adaxial end of apodeme III base latitudinally level with point between coxite setae $I I L 1-I V]$ and longitudinally level with point midway between coxite setae $I V 1-I / 2$. Custodial ridge present. Discidium forms a shallow flap (depih subequal to diameter of seral base $J V 3$), Circumpedal ridge absent. Weak alveolate sculpturing along midcoxite region (Fig, 15, illustrated only on coxite IV). Pedotectum II medium-breadth, fong, extending further Jaterally than pedotectum I .
Opisthosternum with genital setae about two thirds length of anal setae. Genital chaetotaxy very variable, commonest pattern illustrated (Fig. 15), but also $2 / Z \mathrm{~g}, 3 / 2 \mathrm{~g}$ and $5 / 2 \mathrm{~g}$, wissing setae $J Z g 2$ and $J \mathrm{Zg} 3$, extra scta betweeri. $/ \mathrm{Zg} 3-\sqrt{2 g} 4$, confined to one side; spacing varies for $4, J \mathrm{Zg}$, usually even, sometimes central space ($J \mathrm{Zg2}-J \mathrm{Zg} 3$) extensive so that setae in two groups. No eggs observed.

Legs short (mean femur-tarsus length; 38% of soma). Porose areas on Fermurs and trochanters 1 II and IV, Indistinct rugae on femurs 1 and 01 , distinct rugae on femurs III and IV, Keel with shallow flange on fernur 11. Solenidium sol on tarsus 1 subequal in diameter to base of seta $d 3$ and reaching to setae $d 4$. Five ventral setae on tarsus I, proximoventral seta $v 2$ absent, only one ($v 3$) ciliate, with six or seven cilia (longest cilium subequal in length to setal base diameter) along iwo-rhirds of length. Pretarsi with three claws (central stout claw, lateral slim claws).

Mate

As female, except smaller soma, idiosomal length, 273 (5, 262-285).

Material examined

Holotype: Q (N1988320); soil, litter and sparse grass under coastal wattle (Acacia sophorae), Piccaninnie Ponds Conservation Park ($38^{\circ} 03^{\prime} \mathrm{S}$, $140^{\circ} 57^{\prime}$ E), 3xii. 1974.
 (N1988323-N1988327), same data as holotype.

Distribution

Australia (Aa). South Australia, Coastal closedscrubland (Piccaninnie Ponds Conservation Park), SE coastal, 3 우우, 5 or o $/ 2$ of $8 \times 25 \mathrm{~cm}^{2}$.

Remarks

H. (Tenuileius) paratenuis differs from the other two species of Tenuileius in having a fusiform sensory seta (z2). It is intermediate in size betweon these species. In details such as the circular pore to the hysteronotal foramina and presence of lateral coxite setae it resembles A. (T.) minimus, whilst in its general broader shape it more closely resembles H. (T.) tenuis. It is assumed here that H. (T., tenuis has a narrow hysteronotal shield anteriorly, but this. is not commented on in its description (Aoki 1982).

Acknowledgments

I am indebred to Miss Carolyn Birchby for preparing most of the drawings, to Mr George Pajak for some preliminary drawings, and to the Australian Biological Resources Study for funding their salaries. Thanks are also due to Ms Kathy Bowshall for the notation and presentation of the figures and Mrs Debbie Brunker for typing the manuscript.

References

AOK1. J. 1982. New species of oribatid mites from the southern island of Japan. Bull. Inst. Envir. Sci. Jechnol, Yokohama Nain. Univ. 8: 173-188.
BALOGH, J. 1962. Acari oribates. Annls Mus. r. Afr. cent. Sér LXXV, 110: 90-131.
BALOOH, J. \& BALOGH, P. 1983. New aribatids (Acari) from the Pacilic region. Acta zool, hung. 29: 303-325,
BALOGH, J. \& BALOGH, P. 1984. Review of the Oribatuloidea Thor, 1929 (Acari: Oribate) Acto zool. hung. 30: 257-313.
BERCESE, A. 1908. Elenco di generi e specie nouvi di Acari. Redia 5: $\mathbf{1 - 1 5}$.
BERLESE, A. 1916. Centuria terza di Acari nouvi. Redia 12: 289-338.
BERLESE, A. 1920 Centuria quinta di Acarl nouvi. Reclia 14: J43-195.

COETZER, A. 1968. New Oribatulidae Thor, 1929 (Oribatci, Acari) from South Alrica, new combinations and a key to the genera of the famuty, Mems. Inst. linvest, clent Mocamb., Sér. A, 9: 75-126.
DENMARK, H.A. \& WOODRING, J.P 1965. Feeding habits of Hemiletus new species (Acari: Cryptostugmata: Oribatulidae) on Florids orchids, Fla ent. 48: 9-16.

EWING, H.E. 1909. New American Oribatoidea, J/N.Y. ent, Soc. 17: 116-136, pts 2-6.

FITCH, A. 1856. Third (Annual) report on the noxions and other insects of the state of New York. Truns. N. Y Si agric. Soc. [6: 315-490 [not scer].

GRANDIEAN, F. 1933. Études sur lo développement des Oribates, Bull. Soc. Zool, France 58: 30-61.

GRANDJEAN, F. 1951. Sur deux espèces du genre Dornetorina n.g. et les moeurs de D. plantivaga (Berl.). Bull. Soc. Zool. France 75: 224-242.
GRANDJEAN, F. 1953. Sur les genres 'Hemileius'Berl. et 'Siculobata'n.g. (Acariens, Oribates). Mem. Mus. nat. Hist. natur. (n.s.), ser. A. Zool. 6: 117-138.
HAMMER, M. 1952. Investigations on the microfauna of northern Canada. Pt 1: Oribatidae, Acta arct. 4: 1-108.
HAMMER, M. 1962. Investigations on the oribatid fauna of the Andes Mountains. 111. Chile. Biol. Skr. 13(3): 1-37, pls 1-11.
HIGGINS, H.G. \& WOOLLEY, T.A. 1975. New mites from the Yampa Valley (Acarina: Cryptostigmata: Oribatulidae, Passalozetidae). Gt Basin Nat. 36: 496-500.
LEE, D.C. 1987. Introductory study of advanced oribate mites (Acarida: Cryptostigmata: Planofissurae) and a redescription of the only valid species of Constrictobates (Oripodoidea). Rec. S. Aust. Mus. 21: 35-42.
LEE, D.C. \& PAJAK, G.A. 1988. Setobates (Acarida: Cryptostigmata: Schcloribatidac) from South Australian soils. Trans. R. Soc. S. Aust. 112(1): 21-27.

LEE, D.C. \& PAJAK, G.A. (in press). Scheloribates Berlese and Megascheloribates gen. nov. from southeastern Australia, with comments on Scheloribatidae (Acarida: Cryptostigmata: Planofissurae). Invert. Tax:
MARSHALL, V.G., REEVES, R.M. \& NORTON, R.A. 1987. Catalogue of the Oribatida (Acarida) of continental United States and Canada. Mem. ent. Soc. Canada. 139: 1-418.
NORTON, R.A. \& PALACIOS-VARGAS, J.C. 1987. A new arboreal Scheloribatidae, with ecological notes on epiphytic oribatid mites of Popocatepetl, Mexico. Acarologia 28: 75-89.
PÉREZ-IÑlGO, C. 1969. Nuevos oribátidos de suelos españoles. Eos 44: 377-403.
PÉREZ-IÑıGO, C. 1984. Hemileius hierrensis n. sp. de ácaro oribátido (Acari, Oribatei, Oribatulidac) de la sla dc Hicrro (Canarias). Bolelin A.soc. esp. Entom. 8: 167-173.
PÉREZ-1ÑIGO, E. 1978. Tres nucvas especies de oribátidos de España central (Acari, Oribatci). Eos 52: 175-184.
TRAVÉ, J. 1960. Contribution à l'étude de la faune de la Massane (3^{e} note). Oribatcs (Acariens), $2^{\text {e }}$ partie (1). Vie Milieu 11: 209-232.

